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Abstract

The trend in higher utilization of structural materials leads to a need for accurate numerical tools for
reliable predictions of structural response[ In some instances both material and geometrical nonlinearities
are allowed for\ typically in assessments of structural collapse or residual strength in damaged conditions[
Dynamically loaded structures are prone to fatigue cracking^ this has to be accounted for when computing
nonlinear structural response[ The present study addresses the performance of cracked inelastic shells with
out!of!plane displacement not negligible compared to shell thickness[ This situation leads to membrane
force e}ects in the shell[ Hence\ a cracked part of the shell will be subjected to a nonproportional history of
bending moment and membrane force\ and e[g[ fracture mechanics parameters "J!integral# are a}ected[ A
Mindlin shell _nite element based nonlinear program is developed and utilized herein[ The cracked parts are
accounted for by means of inelastic line spring elements[ These elements also account for possible mode II
deformations[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The numerical analysis of shell type of structures by means of _nite elements\ accounting for
geometrical and material nonlinearity\ has developed signi_cantly during the last decades[ A
summary of recent advances is given by Cris_eld "0886#[ Due to the strong nonlinear behaviour
in shell instability problems\ much research on developing robust methods for solution of the
evolution of global equilibrium equations in an incremental!iterative setting has successfully been
carried out[ Although still not trivial\ one now has algorithms that handle limit points and snap
back:snap through problems[ Robust methods for updating stresses at integration points have
also been developed\ e[g[ backward Euler integration of the elasticÐplastic problem along with the
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consistent linearisation of the updating in order to preserve the asymptotically quadratic rate of
convergence in the NewtonÐRaphson iteration on the global equilibrium equations[ Furthermore\
much e}ort has been put in deriving shell _nite elements that account for out!of!plane shear
deformations in thick shells that are free of locking problems in the thin shell limit[ All problems
regarding nonlinear shell behaviour have still not been solved\ however\ and due to the extensive
use of shell type of structures "pressure vessels\ pipelines\ o}shore platforms# still this is an active
research area[ Shells subjected to variable loading "dynamically or quasi!statically# may develop
cracks\ this is especially the case for shells with attachments such as sti}eners or other out!of!plane
components welded to the shell[ Usually the material applied in the shell structures mentioned
above is very ductile[ As a consequence\ the cracked shell allows "signi_cant# inelastic deformations
without:before fracturing[ In order to check the capacity\ nonlinear fracture mechanics may be
utilised\ typically by means of calculation of the J!integral "Rice\ 0857# or the crack tip opening
displacement CTOD "Cottrell\ 0850^ Wells\ 0850#\ and compare these quantities against the
corresponding critical quantities[ According to recent research these fracture criteria should be
supplemented with a parameter measuring the constraint in the crack tip region[ A methodology
based on T!stress or Q!parameter is under development "Betegon and Hancock\ 0880^ O|Dowd
and Shih\ 0881^ Parks\ 0881^ Kirk and Bakker\ 0884#[ Although it is possible to do non!linear solid
_nite element analysis of cracked shell structures in order to compute the fracture mechanics
quantities\ or even calculate the damage evolution from fracture initiation to failure by means of
damage mechanics\ the size of these problems in relation to computer resources often precludes
such analyses to be carried out[ An alternative way of solving these problems is the combination
of shell and line spring _nite elements "Rice and Levy\ 0861^ Parks and White\ 0871#[ Now the 2!
D problem is simpli_ed to a 1!D one\ with solution of equation systems of size one order of
magnitude lower than in the 2!D case[ Such analyses may e}ectively be carried out today[ The
accuracy in computed response and fracture mechanical parameters by this method is satisfactory
for engineering applications[ Over the last decade there has been development of the line spring
modelling\ e[g[ accounting for a crack tip plastic zone that leads to line spring response "load vs
deformation# appearing softer in the transition between elastic and plastic regime as if the actual
crack was slightly larger "Lee and Parks\ 0884#^ improved Mode I yield surfaces for the fully plastic
performance of the line spring for larger range of crack depth to shell thickness ratios "Lee and
Parks\ 0882#\ mixed mode I:II yield surfaces "Skallerud\ 0885#\ ductile tearing line spring "Lee and
Parks\ 0886#[ To the author|s knowledge\ a point that still has not been considered is the e}ect of
large out!of!plane displacements on the response of cracked shells[ Such displacements may occur
in components that have out!of!plane load carrying attachments[ An important relevant case in
this respect is illustrated in Fig[ 0 "Skallerud\ 0884#[ Here a tubular joint transfers the brace loading
into the chord[ If the brace load exceeds the levels where the global response is linear\ the chord
may change shape as illustrated in Fig[ 0"b#\ i[e[ a nonlinear geometrical e}ect[ Figure 0"c# further
details the joint in the brace!chord transition\ illustrating the weld by the hatched region[ The weld
toe is prone to fatigue crack growth\ and in an overload situation this part of the shell may be
subjected to both material and geometrical nonlinearities[ Note also that the cracked chord region
is subjected to both mode I and mode II loading[

The present investigation addresses situations such as depicted in Fig[ 0"b#\ i[e[ shells with
signi_cant loading out!of!plane[ In order to simplify the problem\ the main geometries studied are
cracked ~at shells\ accounting for plasticity and membrane stresses developing due to the _nite
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Fig[ 0[ Large deformation in cracked tubular joint[

out!of!plane displacements[ In the _rst part of the study\ the cracked plate is simpli_ed to rigid
plates connected with inelastic line springs[ Hence\ the governing deformations are due to the
elastic!plastic deformations in the crack region ligament[ For shell structures with large!width
surface cracks this is representative[ This part also presents the basic line spring relationships[ In
the second part\ the line spring is utilised in a nonlinear shell _nite element program developed
within the course of the study\ called SHELls[ Here plates:shells with semi!elliptical cracks are
studied[

1[ Rigid plate*line spring geometries

Figure 1"a# shows the plan view of a cracked plate loaded out!of!plane[ The plate width "normal
to _gure# is assumed large\ hence having a plane strain situation[ Taking the two plate parts as
rigid\ the deformations are accounted for by the line spring as illustrated in Fig[ 1"b#[ During load
application the vertical de~ection leads to a rotation[ If the boundary conditions at each end of
the plate is _xed with respect to in plane displacements\ axial deformation of the line spring
develops due to this restraint[ The vertical spring accounts for eventual Mode II deformations[
For the case in Fig[ 1"b# no Mode II is present\ but placing the crack eccentrically as shown in
Fig[ 1"c#\ this deformation occurs[ It should be noted that the line spring sti}ness refers to the
mid!thickness of the plate[ The gap between the two rigid plates in Fig[ 1"b# is for illustration
purposes\ the length of the rigid plates is taken as l subsequently\ hence the springs have vanishing
extension in length direction before loading[ Finally\ as long as the line spring is elastic there is
connection between axial and bending deformation and no connection with the shear deformation[
Inelastically\ however\ all deformation modes may interact[

1[0[ The mixed mode I:II line sprin` model

For completeness some of the line spring relationships are presented here[ Further details may
be found in "Rice and Levy\ 0861^ Parks and White\ 0871^ Skallerud\ 0885#[ The line spring
simulates the additional ~exibility of a shell due to a cracked part[ Figure 2"aÐc# illustrate the main
features for Mode I loading\ from the basic plane strain model where a:c � 9 "c � � is the crack
size in x!direction#\ via using the crack depth at a given x co!ordinate for semi!elliptical cracks as
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Fig[ 1[ Rigid plate inelastic line spring[

Fig[ 2[ Line spring concepts[
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input to determine the ~exibility at that co!ordinate\ to discretized line spring sti}nesses in a shell
_nite element model[

The connection between the line spring deformations and energy conjugate forces in the elastic
regime is expressed as]

D � CNNN¦CNMM

u � CMNN¦CMMM

j � CVVV

CNM � CMN

q � CeQ "0#

The compliances Cij are obtained from known solutions for surface cracked strips "Rice and Levy\
0861#[ Inverting the compliance matrix yields the elastic sti}ness matrix for the cracked section]

Q � Deq � C−0
e q "1#

The mixed mode I:II lower bound yield surface employed in "Skallerud\ 0885# reads]

f"N\ M\ V\ sy^ c# � $
N
Np%

1

¦$
M¦N"t−c#9[4

Mp %¦$
V
Vp%

1

−0

Np � syc\ Mp � 0
3
syc

1\ Vp �
sy

z2
c "2#

Here\ c is the ligament of the cracked section[ One advantage with this relationship is\ in addition
to accounting for the transversal shear force\ that the uncracked limit is obtained appropriately in
contrast to upper bound solutions based on slip lines[ The modi_cation in uniaxial yield stress due
to plane strain "multiplying with 0[04# is straightforward with this relationship\ but for deep cracks
"a:t approximately larger than 9[14# the crack increases the notional yield stress further by a factor
0[15 in predominant bending "Green and Hundy\ 0845#[ As in "Skallerud\ 0885#\ these factors are
employed herein for a:T − 9[14[ This reference may be conferred for further discussion and
presentation of the lower bound yield surfaces[ The lower bound yield surface ðeqn "2#Ł is rep!
resentative for tension and bending in the line spring[ As shown in Fig[ 3\ for compression this
yield surface is very non!conservative[ Hence\ for compression loading The modi_ed GreenÐHundy
yield surface "White et al[\ 0872# is employed[ Lee and Parks "0882# have shown that for such
loadings this surface is quite accurate[ Subsequently\ if the line spring axial force goes from
compressive to tensile "as membrane e}ects develop#\ the yield surface applied is switched from
the modi_ed GreenÐHundy solution to the lower bound solution[

Utilizing an additive decomposition of elastic and plastic line spring deformation increments\
associated ~ow rule\ plastic consistency\ and an isotropic hardening rule\ one establishes the
tangent sti}ness for the line spring]

dq � dqe¦dqp

dqp � dq
1f
1Q
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Fig[ 3[ Upper and lower bound yield surfaces[
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The hardening rule is obtained by the argument that the plastic work increment of the stress
resultants is equal to the continuum work increment integrated over the plasti_ed ligament]

dWp � QT dqp � gAplastic

seq dop\eq dA � ksy

dsy

Ep

cn? "4#

dop �
dsy

Ep

"5#
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It has been shown that the continuum work is proportional to the averaged yield stress over the
ligament multiplied by some plastically deforming area governed by ligament size c[ Parks and
White "0871# introduce a proportionality factor\ denoted k in eqn "4#[ As found earlier\ k � 9[1
and n? � 1 work well for the formulation above\ and are employed herein also[

The elastic part of the mixed mode J may be determined directly from the current load level]

Je �
K1

I

E?
¦

K1
II

E?
"6#

The mode I plastic J increment may be obtained from the plastic crack tip opening displacement\
and this displacement is related to the line spring deformations by means of slip line kinematics]

dJI\p � msy ddI\cracktip\p "7#

ddI\cracktip\p � dDp¦0
t
1

−a1 dup "8#

m � 0¦"M?:Mp#2 "09#

The above simple relationship for the constraint factor m has been discussed previously "Skallerud\
0885#[ Although rather crude\ it simulates the variable constraint for the crack tip plastic zone for
varying ligament tension:bending reasonably under the assumption that the crack tip stress _eld
is governed by J[ In mixed mode loading the following simple determination of plastic J!increment
is assumed "Skallerud\ 0885#]

dJp � dJI\p¦dJII\p � msy$dDp¦0
t
1

−a1 dup%¦m
sy

z2
djp "00#

1[1[ Lar`e displacement analysis of a centrally cracked\ ri`id plate

The situation analysed in this section is illustrated in Fig[ 1"a# and "b#[ However\ in order to
circumvent the initial\ arti_cially large compressive forces that develop in the line spring when the
axial displacements at the boundaries are prevented at the mid!thickness of the plate\ the boundaries
are applied at the level of crack section mid!li`ament[ Otherwise\ the problem would also include
a snap!through behaviour before the ligament enters tension loading[ Using a co!ordinate system
based on the mid!ligament reference level\ the elastic line spring sti}ness is transformed accordingly
by TTDeT\ where T �"0\ −9[4a\ 9^ 9\ 0\ 9^ 9\ 9\ 0# "the matrix rows are separated by semi!colons#[
The elasticÐplastic results so obtained may now be compared to the analytic solution of the rigid
plastic solution of a beam with a plastic hinge at midsection account for membrane force\ extended
to plane strain in order to simulate a wide plate]

P:P9 � 0¦3"v:t#1\ v:t ³ 9[4

P:P9 � 3"v:t#\ v:t × 9[4 "01#

Here P9 is the plastic capacity due to bending alone[ For the cracked plates the thickness t is
replaced by the ligament c in the above equations[ v is the transversal displacement[

The incremental connection between v and the line spring extension and rotation is
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dD:1 �"v:lz0¦"v:l#1# dv and du:1 � dv:l\ respectively[ With this\ terms of order higher than two
is neglected[ The incremental equilibrium of one half of the plate!spring system in the deformed
con_guration is dP:1 = l � dN = v¦N = dv¦dM[ Utilizing the tangent sti}ness for the line spring
and the connection between the line spring deformation and transversal displacement\ a scalar
equation for evolution of transversal load vs displacement is obtained[

Figure 4"a# shows the load vs displacement behaviour for the geometry in Fig[ 1"a# keeping the
plate half!length to ligament ratio constant equal to 49[ The line spring material is assumed elasticÐ
perfectly plastic[ Three di}erent a:t ratios are examined[ When the curves get linear a situation of
pure axial load in the line spring has developed[ For a:t � 9[14 this occurs rapidly\ for the plot of
a:t � 9[64 this situation has not occurred for the level of displacement plotted[ According to the
rigid plastic analytic solution above\ the pure membrane situation is reached for v:c � 9[4[ From
Fig[ 4"a# one observes that for the two largest cracks this is delayed due to the elasticity of the line
spring[ For the smallest crack the behaviour resembles the analytic solution[ For a:t � 9[4 the
results are plotted again in Fig[ 4"b# along with the rigid plastic solution eqn "01#[ One observes
that the line spring result merges with the analytic solution when the displacement has reached a
certain level[ Note that the loadÐdisplacement curves would be horizontal after reached P9 if the
system only carried load by bending moment "i[e[ horizontally free motion of the boundary
displacement#[

Figure 4"c# depicts the corresponding evolution of the J!integral for the three crack depths[ The
three upper curves represent the total J\ the three lower represent the part of the J!integral caused
by the second order membrane force in the line spring[ This membrane contribution would be zero
for a horizontally unrestrained boundary[ The change in curvature of e[g[ the a:t � 9[4 curve for
large v:c is explained by Fig[ 4"d#[ Here the evolution of the constraint factor is plotted\ showing
that initially it is two "bending dominated#\ then as the line spring carries more and more by
membrane action\ it approaches one[ This leads to a corresponding reduction in the increase of
the J!integral[

Figure 4"c# points out that if a transversally loaded cracked plate has in!plane restraints\ and
the loading is in displacement control\ the J!integral will be under!estimated if the analysis assumes
the load carrying by plate bending only[ This observation is valid for large!width cracks\ as other
e}ects occur for _nite widths\ and is discussed in the second part[ Additional analyses for other
L:c!ratios show similar features as those given by Fig[ 4[

1[2[ Analysis of an eccentrically cracked\ welded T!connection

In order to investigate a situation with both Mode I and II the specimen illustrated in Fig[ 5"a#
was analysed[ At one weld toe a 6 mm deep surface crack was initiated by fatigue "note that all of
the crack had this depth#\ and then the specimen was tested with respect to ductile fracture
"Rabben\ 0884#[ At each end of the horizontal plate\ roller bearings were employed\ i[e[ unrestrained
horizontally[ The transversal load was applied in the vertical plate[ The strains in y!direction were
measured and compared with the corresponding strains in x!direction[ These results showed that
a plane strain situation was representative for the plates[ Additionally\ the specimen was analysed
by means of detailed plane strain elementation with ABAQUS "Hibbitt et al[\ 0882^ Rabben\ 0884#\
accounting for large deformations and damage growth[ The details of these analyses will be
presented elsewhere "Skallerud et al[\ 0886#[ However some of the results are utilized herein for
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Fig[ 4[ "a# and "b# load vs displacement\ "c# evolution of plastic J!integral\ "d# evolution of constraint factor[
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Fig[ 4*Continued[
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Fig[ 5[ "a# T!connection\ "b# load vs displacement\ "c# J!integral evolution[
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Fig[ 5*Continued[

comparison with line spring analysis[ The horizontal plate was assumed rigid in the line spring
approach\ and the static system was taken as shown in Fig[ 1"c#[ The boundary is free to move
horizontally\ hence\ the system carries load by bending and shear forces[

Figure 5"b# shows transversal load vs load line displacement for the T!connection[ The curve
denoted FEA is based on Mises material "no damage growth# and plane strain _nite elements
"ABAQUS#[ The initial sti}ness in the numerical models deviates from the test result due to
di.culties with accounting for di}erent sources of local boundary ~exibilities in the rig[ But the
FEA and line spring "LS# result correspond well in the initial part of the curve[ For the 6 mm
crack analyses the LS curve is somewhat gentler than the FEA curve[ One reason for this is that
the hardening in the line spring was modelled by a constant "average# plastic modulus whereas the
plane strain element model employs the measured stressÐstrain curve as model for hardening
behaviour[ The test result shows a limit point due to the ductile crack growth[ However\ the
numerical results in the initial plastic regime correspond quite well to the test result[ One should note
that the two numerical models have number of unknowns di}ering by four orders of magnitude[

Additional analyses were carried out for the T!connection with a 3 mm crack[ The cor!
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respondence between the LS and FEA curve in this case is good[ One reason for the earlier
nonlinear behaviour in the FEA curve compared to the LS curve is a gradually increasing crack
tip plastic zone not accounted for in the line spring model[ Remedies for this have been developed
by Lee and Parks "0884#[

Figure 5"c# shows the evolution of the J!integral obtained from the plane strain _nite element
model and the line spring model when a � 6 mm[ Here correspondence is good for fully developed
plastic behaviour[ The plastic J!contribution from the bending and shear in the line spring are also
plotted[ Interestingly\ one sees that the shear "Mode II# contribution is signi_cant\ and neglecting
this in the line spring simulation leads to an underprediction of the computed line spring J!integral
in this mixed mode situation[

1[3[ Analysis of a three point bend specimen

The specimen drawn in Fig[ 6"a# was tested and analysed with di}erent planar _nite element
models "Rabben\ 0884^ Skallerud and Zhang\ 0886#[ Figure 6"b# depicts the di}erent loadÐ
displacement behaviour for the models along with the test result[ The test result curve shows a
limit point later in the displacement application[ Two planar FEA model results are plotted\ one
assuming plane stress and one with plane strain[ It is noted that the test result is located between
these two curves\ and a 2!D solid element model captures a more correct constraint for the plastic
zone "Skallerud and Zhang\ 0886#[ The corresponding line spring results\ however\ corresponds
quite well with the FEA results[ Also here the part of the specimen on each side of the crack were
assumed rigid[ Additionally\ a line spring model with a modi_ed yield stress was applied "LS
curve#[ If we denote a yield stress constraint factor by a\ we know that it should be bounded by
one "plane stress# and 0[34 "plane strain\ 0[04\ and 0[15 due to crack#[ The specimen thickness
requirement for a plane strain plastic zone may be written BI × msize ( dIc[msize has been calculated
to be in the range 14Ð199\ depending on loading condition and specimen geometry "McMeeking
and Parks\ 0868#[ Expressing the constraint as an exponential function of the ratio of actual
thickness B to required plane strain thickness BI\ the following relationship is proposed]

a � 0−9[060>00−
B
BI1¦9[34 = e0

B
BI

−01\ "B × BI : B � BI# "02#

For the actual material tested the critical CTOD is approximately 9[4 mm at room temperature[
Using msize � 099 one obtains a � 0[12[ This value is used for the LS curve in Fig[ 6"b#[ The
relationship is a pure _tting here\ and needs of course more study in order to check its validity[

2[ Shell and line spring _nite elements

The situations analysed in the previous part correspond to the con_guration illustrated in Fig[
7"a# and "b#\ taking the width of the crack\ c\ equal to plate width[ Then the assumption of
rigid plates connected by line springs is reasonable[ For semi!elliptical cracks\ however\ such an
assumption may be erroneous as some parts of the shell midsection are intact[ These parts restrain
the deformation of the cracked part of the shell[ In order to account for this the plates are modelled
by means of shell elements in the following[ For horizontally _xed boundary conditions\ shell
membrane stresses develop for increasing out!of!plane displacement[ The static system for the
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Fig[ 6[ "a# Three point bend specimen\ "b# load vs displacement[

uncracked and cracked half!plate parts are depicted in Fig[ 7"c# and "d#\ respectively[ The system
in Fig[ 7"a# is analysed subsequently\ both with the load applied along the center line "as shown#
and by symmetric four point bending[

2[0[ Finite element formulation

A total Lagrangian description of motion is employed[ The stress and strain measures employed
are two PiolaÐKircho} "1PK# and GreenÐLagrange "GL#\ respectively[ The reference xy!plane is
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Fig[ 7[ Surface cracked plate[

through the mid!thickness plane of the unloaded structure[ From the geometries analysed\ some
simpli_cation in the strain description is utilized[ The vertical displacement under the load appli!
cation is restrained to be equal\ and the vertical motion at the left and right boundaries is zero[
Hence\ the curvature of the plate in y!direction will be very small "zero at the displacement
boundaries#[ The only nonlinear strain term accounted for in the present study stems from
curvature in x!direction[ Furthermore\ the in!plane shear deformations will be small\ especially
for the case where the left and right boundaries are _xed with respect to x!displacement[

A rectangular four!node Mindlin type of shell element with 19 degrees of freedom is chosen
herein\ hence simulating the shear deformation in the zx! and zy!plane[ The element degrees of
freedom "with positive directions# are shown in Fig[ 8[ Denoting the bi!linear interpolation
polynomials by N "i[e[ u � Nvu etc[# and the di}erentiation of N with respect to x and y by Bx and
By\ respectively\ the connection between the strain components and the nodal DOF for the
situations analysed herein reads]

E �
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vu\v\w\uy\ux are the 4×"3×0# column matrix with DOF corresponding to x\ y\ z displacements and
rotations about the y! and x!axis\ respectively[ Note that the only nonzero contribution to BNL is
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Fig[ 8[ Shell _nite element[

the term vT
wB

T
xBx\ linking the out!of!plane displacement to the axial stress\ i[e[ a von Karman

linearisation in the x!direction[
The incremental relationship between the 1PK stresses and GL strains is expressed in the usual

way]

dS �
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G

G

G
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f
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1f
1S10De

1f
1S1

T

1fT
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G

G

j

dE � D dE "04#

Here De is the elasticity matrix for the material\ Ep is the hardening[ The shell material is assumed
to follow a linear isotropic hardening rule\ and the von Mises yield surface is employed in the
above equation[

The discretized expression for the weak form of incremental equilibrium is obtained from the
incremental virtual displacement principle\ and reads]

gVelem

ðdvT"BL¦BNL#TD"BL¦BNL#Dv¦SxxdDEŁ dVelem � dvTDRext\elem "05#

c kelemDv � DRext\elem

The term with Sxx\ initial stress sti}ness\ accounts for the increasing membrane action for increasing
out!of!plane displacements[ Rext\elem is the element nodal forces due to external loads[ The in!plane
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integration of the element is carried out by means of a 1×1 Gauss quadrature for all terms[ This
full integration causes problems with shear locking for thin shell elements\ but in the simulations
below\ the shell elements do not have such small thickness to length ratios[ The integration over
the shell thickness is carried out by the _ve point Lobatto rule\ hence capturing extreme _ber _rst
yield in bending[ The linearly interpolated line spring element is integrated with a one point Gauss
rule[

The above relationships were implemented and run with MATLAB syntax[ All equations are
solved by the explicit Euler method\ keeping increments su.ciently small in order to prevent
signi_cant drift from the correct solution[

2[1[ Analysis of an intact plate

In order to check the shell element performance\ the geometry shown in Fig[ 7"a# was analysed
with SHELls[ One quarter of the plate was modelled with 05 shell elements "3×3#[ The left and
right edges were _xed with respect to x!displacement in order to develop membrane stresses[ The
material was taken to be nonhardening\ hence having the opportunity to compare with the rigid
plastic solution given in eqn "01#[ The thickness to half!length for the plate was 9[08[ Figure 09
shows the transversal load vs transversal displacement for the simulation and the analytic solution[
The initial bending dominated\ load carrying capacity is overpredicted somewhat[ This is explained
by the relatively coarse FE mesh and using _ve integration points through thickness[ For increasing
de~ections\ however\ the simulation merges quite well with the analytic solution\ indicating that
the membrane action is appropriately accounted for[ One should note that the stress history in
some of the inelastic integration points is very non!proportional\ e[g[ the upper surface stress goes
from compressive to tensile as the membrane force takes over the load carrying[

2[2[ Analysis of a cracked plate in four point bendin` without membrane action

White et al[ "0872# have reported test results for cracked wide plates loaded in four point
bending[ One of their tests\ denoted SC07 in the reference\ was analysed herein with 3×3 shell
elements and two line spring elements "length 09 and 1[6 mm# for 0:3 of the plate[ The crack in
the test specimen is semi!elliptical with a:t � a:c � 9[24[ The material has yield strength 385 MPa\
and is low!hardening[ In the simulations it is assumed a constant plastic modulus of magnitude
0679 MPa[ Note that the ratio of crack width to plate width\ c:b\ is quite small\ 9[14[ Hence\ the
crack area is small compared to remaining shell area[ Figure 00"a# illustrates the load vs crack
mouth opening displacement curves for the test and simulation[ The CMOD is measured slightly
above the specimen surface\ therefore it is denoted modi_ed CMOD in the _gure[ Some over!
prediction in sti}ness is observed in the elastic plastic transition\ but in the fully plastic regime\ the
simulation corresponds quite well with the test[ It should be noted that White et al[ "0872# also
simulated this test with a _ner element mesh "17 plate and four line spring elements#\ and with
seven Lobatto points through thickness[ This simulation follows the test result nicely\ although
the initial elastic sti}ness is somewhat overpredicted[

Figure 00"b# illustrates the evolution of the J!integral in the SHELls simulation[ The integration
points for the two line spring elements correspond to the parametric angles f equal 0[0 and 9[36
radians\ respectively[ These angles are measured on a circular arc going from the surface of the
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Fig[ 09[ Load vs displacement for intact plate with membrane force[

specimen to the deepest point of the crack[ The J!integral prediction is underestimated somewhat
when compared to the line spring calculation of J obtained by White et al[ "0872#[ For the line
spring calculation representing the central part of the crack\ where the crack front curvature is
small\ the correspondence between the two simulations is improving for increasing deformation[
As accurate J!predictions requires a _ner mesh\ and is not a main goal in the present study\ the
results are considered acceptable for the subsequent simulations[ Note that in the present simu!
lations\ if the net incremental crack tip opening contribution according to eqn "8# is less than zero\
the J!increment is set to zero[

2[3[ Analysis of cracked shells with membrane action

The four point bend specimen described in the previous section is now modi_ed to have
horizontally restrained x!displacements at the left and right boundary\ see also Fig[ 1[ The yield
stress and plastic modulus are the same as above[ In the simulations shown in Fig[ 01"a#\ one
accounts and one does not account for the initial stress term[ The signi_cant load increase due to
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Fig[ 00[ "a# Load vs CMOD for cracked plate without membrane force\ "b# corresponding J!integral evolution[
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Fig[ 01[ "a# Load vs displacement\ "b# plastic J!integral\ "c# line spring deformation[
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Fig[ 01*Continued[

the membrane action is clearly seen[ Nothing new is exhibited in this plot compared to the plots
in Part 0\ but turning to Fig[ 01"b# one observes that the J!integral for the integration point in the
central line spring element saturates to a constant value " for the displacement level plotted# when
membrane force is accounted for[ If the plate carries load in bending only\ this saturation is much
slower[ The explanation for this behaviour is the fact that the redistribution of load to the intact
parts of the shell is more signi_cant if membrane stresses contributes to load carrying[ The intact
parts of the shell constrains the cracked section both with respect to in!plane deformations and
rotations\ and depending on whether the load is carried by bending only\ these constraints a}ect
the line spring deformations di}erently[ Note also that assuming rigid plate!inelastic line spring as
in Part 0\ the line spring rotation follows u � arcsin"v:l# or arctan"v:l# for horizontally unrestrained
or _xed x!motion\ respectively\ i[e[ the two cases have an increasing or decreasing rotation
evolution[ This is further illustrated in Fig[ 01"c# where the line spring integration point rotation
and extension are plotted[ The negative part of the ordinate axis gives the extension\ the positive
part the rotation[ One observes that if the load is carried by bending only\ the rotation is much
larger than the corresponding simulation with membrane action[ The extension is approximately
zero for the bending only simulation\ whereas the membrane action leads to a somewhat larger
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extension of the line spring[ These deformations do saturate in the simulation with membrane
action\ and according to the calculation of the J!integral\ decreasing line spring deformation
increments leads to decreasing crack tip displacement increments[ Hence\ the J!integral saturates
due to the signi_cant restraint from the intact part of the shell[

In order to investigate the e}ect of the crack width on the cracked shell behaviour\ an additional
analysis was run with c:b � 9[7 "in the previous example c:b � 9[14#[ Figure 02"a# shows several
loadÐdisplacement curves[ Curves that may be compared are the two accounting for membrane
forces\ they are based on similar a:t ratios and elasticÐperfectly plastic material[ The abscissa axis
is transversal displacement normalized with the distance between the load application and the
boundary[ Corresponding J!integral evolution is plotted in Fig[ 02"b#[ The saturation of J observed
for the plate with the smallest crack is not occurring to the same extent for the wider crack[ It
exhibits a competition between increase and saturation\ governed by the evolution of line spring
deformations and load redistribution to the intact parts of the shell[ The curve representing the
plate without membrane action is located between the two curves accounting for membrane action
for the displacement level shown[

Other a:t! and a:c!ratios show similar behaviour as illustrated by Fig[ 02[ Increasing the crack
depth yields a line spring that needs larger transversal displacement in order to reach a full
membrane load condition[ If the structural con_guration is according to three point bending\ a
similar delayed membrane evolution is observed[ An important di}erence between the four and
three point bending systems is that the four point bend has a larger membrane force e}ect\ as the
part of the plate between the load application points tends to straighten[ This does not occur in
three point bending[

3[ Concluding remarks

The present investigation has addressed the e}ects of second order membrane e}ects on the
response of cracked shells loaded out!of!plane[ The main objective was to investigate qualitatively
the response of shells subjected to _nite out!of!plane displacements[ In order to isolate e}ects\
some simpli_ed components were analysed _rst\ assuming rigid cracked plates connected by elasticÐ
plastic line springs[ This represents plates with crack!width equal to plate width[ It is noted
that in components with restraints against in!plane deformation subjected to _nite out!of!plane
deformations\ the membrane contribution to the J!integral is signi_cant\ and is the main con!
tribution for transversal de~ections larger than approximately two times the ligament size[
Assuming pure bending as load carrying in such situations\ the J!integral will be underestimated
signi_cantly if the load is applied in displacement control[ An eccentrically cracked plate was
also analysed with the simpli_ed approach[ This example contains both Mode I and II crack
deformations[ The line spring model corresponds well with both detailed plane strain FEA results
and test results[ The importance of being able to calculate the Mode II J!contribution is pointed
out[

Turning to surface cracks of _nite width\ shell and line spring _nite element analyses of cracked
plates in four point bending were carried out[ Now the crack width to plate width ratio becomes
an important parameter due to the signi_cant capability of the shell to redistribute load to the
intact part of the shell[ In a displacement controlled load situation\ assuming vanishing restraint
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Fig[ 02[ E}ects of crack width] "a# load vs displacement\ "b# plastic J!integral\ "c# line spring deformation[
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Fig[ 02*Continued[

against in!plane "axial# deformations leads to conservative J!predictions[ Hence\ it is not obvious
to state whether accounting for the membrane action in a fracture mechanical assessment of a
semi!elliptically cracked shell is conservative[ The number of parameters that a}ect this result
increases compared to analyses assuming linear geometry "small displacement gradients#[ In
conclusion the following parameters should be considered in a total assessment of the capacity of
a cracked shell] a:t\ a:c\ c:b\ v:t\ load or displacement control of external actions\ stressÐstrain
curve\ crack growth initiation parameter Jc\ dc\ in!plane restraints\ and constraint "T\ Q\ or m#[

In further investigations of the problems addressed herein\ other geometries and load conditions
should be analysed[ In the present study no actual fracture assessment has been performed\ only
response and J!integral evolution have been presented[ Hence\ a synthesis of analysis "shell
and line spring _nite elements\ linear:nonlinear geometry#\ J!calculation\ and fracture initiation
prediction should be carried out\ and compared with corresponding test results[ Furthermore\ the
capability of the line spring to simulate ductile tearing in the above _nite element setting should
be studied[
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